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PART – A

Answer ALL questions:                                   





 (10 x 2 = 20)

1. State and prove the triangular inequality.

2. Prove that the sets Z and N are similar.

3. Prove that the union of an arbitrary collection of closed sets is not necessarily closed. 

4. Prove that every neighbourhood of an accumulation point of a subset E of a metric space contains infinitely many points of the set E. 

5. Show that every convergent sequence is a Cauchy sequence.

6. Define the term “complete metric space” with an example.

7. State Rolle’s theorem.

8. Prove that every function defined and monotonic on 
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 is of bounded variation on 
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.    

9. State the linearity property of Riemann-Stieltjes integral.

10. State the conditions under which Riemann-Stieltjes integral reduces to Riemann integral.

PART – B

Answer ANY FIVE questions:



                                     (5 x 8 = 40 marks)

11. State and prove Cauchy-Schwartz inequality.  

12. Prove that the interval 
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 is uncountable. 

13. State and prove the Heine-Borel theorem.

14. State and prove the intermediate value theorem for continuous functions.

15. Let 
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 be metric spaces and 
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. If 
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 is compact and 
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 is continuous on 
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, prove that 
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 is uniformly continuous on 
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16. State and prove the intermediate value theorem for derivatives. 

17. Suppose 
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 on 
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. Prove that 
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18. a) Let 
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 be a real sequence. Prove that (a) 
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 converges to L if and only if    
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PART – C

Answer ANY TWO questions:




                                     (2 x 20 = 40)

	19.
	(a) Prove that every subset of a countable set is countable.

	
	(b) Prove that countable union of countable sets is countable. 

	
	(c) State and prove Minkowski’s inequality.                                                            (8+7+5)

	20.
	(a) Prove that the only sets in R that are both open and closed are the empty set and the set R itself.

	
	(b) Let E be a subset of a metric space 
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. Show that the closure 
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 of E is the smallest closed set containing E.  

	
	(c) Prove that a closed subset of a compact metric space is compact.                     (4+8+8)

	21.
	(a) Let 
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 be metric spaces and 
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. Prove that 
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 is continuous on X if and only if 
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 is open in X for every open set G in Y. 

	
	(b) Explain the classification of discontinuities of real-valued functions with examples.

                                                                                                                                     (12+8)                              

	22. 
	(a) State and prove Lagrange’s mean value theorem.

	
	(b) Suppose 
[image: image30.wmf]f[]

ÎÂa

 on 
[image: image31.wmf][a,b]

 and 
[image: image32.wmf]b

fd0

a

a=

ò

 for every 
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 that is monotonic on 
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. Prove that 
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	(c) Prove that a bounded monotonic sequence of real numbers is convergent.       (8+4+8)
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